A Bayesian approach to estimating background flows from a passive scalar

Justin Krometis, Virginia Tech

March 16, 2016
Advection-Diffusion Equation

Advection-diffusion equation describes behavior of a passive scalar θ driven by a background flow v and diffusing with constant κ:

$$\dot{\theta} = -v \cdot \nabla \theta + \kappa \Delta \theta$$ \hspace{1cm} (1)

Example: Contaminant in a flowing fluid
Simple Vector Field
Effect of Simple Vector Field
Problem Statement

Given measurements of \(\theta \), e.g.

- **Spectral data:** \(y_j = \langle \theta(t), e_{k_j} \rangle_{L^2} + \eta_j(t) \)
- **Direct Observations:** \(v(x_j, t_k) + \eta_{j,k} \) ("weather forecasting" example)
- **Tracers:** \(\partial_t z_j = v(z_j, t); y_j = z_j(t_k) + \eta_{j,k} \) ("oceanography" example)

\[\ldots \text{estimate } v \]
Bayesian Inference

- Assume a *prior* distribution - our “best guess” of v before measurements.
- Incorporate measurements of passive scalar and provide an updated best guess, the *posterior* distribution.
- Scale of measurement noise η determines how “strong” the data is
A Bayesian approach to estimating background flows from a passive scalar

Justin Krometis, Virginia Tech

Mechanics: Forward

Forward (“sample to data”) map, \mathcal{G}:

1. Given \mathbf{v}
2. Solve (1) for θ
3. Measure, e.g. collect spectral components, measure at discrete points
A Bayesian approach to estimating background flows from a passive scalar

Mechanics: Inversion

Markov Chain Monte Carlo (MCMC) sampling of posterior distribution by acceptance probability related to potential (negative log likelihood) such that

\[
\frac{d\mu_y}{d\mu_0}(v) = \frac{1}{Z} \exp\left(-\Phi(v; y)\right)
\]

For Gaussian measurement noise,

\[
\Phi(v; y) = \frac{1}{2} \left| \Gamma^{-1/2}(y - G(v)) \right|^2 - \frac{1}{2} \left| \Gamma^{-1/2}y \right|^2
\]
A Bayesian approach to estimating background flows from a passive scalar

Justin Krometis, Virginia Tech

A Toy Example

\[\mathbf{v}_{true} \]

Starting vector field
A Bayesian approach to estimating background flows from a passive scalar

Justin Krometis, Virginia Tech

MCMC: Sampling
A Bayesian approach to estimating background flows from a passive scalar

Justin Krometis, Virginia Tech
A Bayesian approach to estimating background flows from a passive scalar

Justin Krometis, Virginia Tech

MCMC: “Final” Vector Field

V_{true}

Ending vector field
Work with Nathan Glatt-Holtz (Virginia Tech) and Jeff Borggaard (Virginia Tech)